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Functionally Graded Piezoelectric Strip with Eccentric Crack 
Under Anti-plane Shear 
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In this paper, we examine the singular stresses and electric fields in a functionally graded 

piezoelectric ceramic strip containing an eccentric crack off the center line under anti-plane 

shear loading with the theory of linear piezoelectricity. It is assumed that the properties of the 

functionally graded piezoelectric ceramic strip vary continuously along the thickness. Fourier 

transforms are used to reduce the problem to the solution of two pairs of dual integral equations, 

which are then expressed to a Fredholm integral equation of the second kind. Numerical values 

on the stress intensity factor and the energy release rate are obtained. 
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1. I n t r o d u c t i o n  

Piezoelectric ceramic materials have recently 

attracted extensive attention in view of their ap- 

plications to smart sensors and actuators. When 

piezoelectric ceramics are subjected to mechanical 

and electrical stresses in service, the initiation and 

propagation of crack may result in the failure of 

these materials. To prevent failure during service 

and to obtain the reliable service lifetime of 

piezoelectric components, the fracture mechanics 

of piezoelectric ceramics has been paid more at- 

tentions to in recent years. However, most res- 

earches examined homogeneous models and few 

fracture mechanics research of functionally grad- 

ed piezoelectric material are presented (Li and 

Weng, 2002). 

For the electric boundary condition on the 

crack surface, two controversial assumptions, 
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permeable or impermeable, have been used by 

many researchers. Parton (1976), Zhang and Hak 

(1992) and Hao and Shen (1994) proposed a 

permeable crack boundary condition which as- 

sumes the continuity of electric displacement 

across the crack faces. Shindo et a1.(1996, 1997) 

proposed special electric crack boundary condi- 

tion and Gao and Fan (1999) proposed continu- 

ous crack boundary condition. But these two 

boundary conditions are similar to permeable 

crack boundary condition. On the contrary, Deeg 

(1980), Sosa(1992), Pak (1992) and Xu and 

Rajapakse (1999) adopted an impermeable crack 

boundary condition, i.e., the vanishing of normal 

electric displacement on the crack faces. Also, 

Kumar and Singh (1997) showed the validity of 

impermeable condition using FEM analysis. But 

these two boundary conditions have not been 

verified yet, so each researcher presented different 

results. Recently, Xu and Rajapakse (2001) 

found that the exact electric boundary conditions 

accounting for the medium inside the crack gaps 

would be reduced to the impermeable crack 

model when the poling direction is perpendicular 

to the applied electric field, so impermeable 

boundary condition is more suitable in this paper. 
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In this paper, we apply the theory of linear 

piezoelectricity to the electroelastic problem of a 

finite eccentric crack off the center line in a func- 

tionally graded piezoelectric ceramic strip under 

anti-plane shear loading. We assume that the 

properties of the functionally graded piezoelectric 

ceramic strip vary continuously along the thick- 

ness. The impermeable crack boundary condition 

is adopted. Fourier transforms are used to reduce 

the problem to the solution of two pairs of dual 

integral equations, which are expressed to a 

Fredholm integral equation of the second kind. 

Numerical results for the stress intensity factor 

and the energy release rate are shown graphic- 

ally. 

2. Problem Statement  and Method of  

Solution 

Consider a functionally graded piezoelectric 

medium in the form of an infinitely long strip 

containing a finite eccentric crack off the center 

line subjected to the combined mechanical and 

electric loads as shown in Fig. 1. A set of car- 

tesian coordinates (x, y, z) is attached to the 

center of the crack. The piezoelectric ceramic 

strip poled with z-axis occupies the region 

( - - c ~ < x < ~ ,  - h 2 < _ y < h b  2 h = h l + h 2 ) ,  and is 

thick enough in the z-direction to allow a state of 

anti-plane shear. The crack is situated along the 

virtual interface ( -a<x<a,  y=0), and the ma- 

terial properties are same on the virtual interface. 

Because of the assumed symmetry in geometry 

and loading, it is sufficient to consider the prob- 

lem for 0<_x<ov only. 

Fig. 1 A functionally graded piezoelectric ceramic 
strip with an eccentric crack: definition of 
geometry and loadings 

We assume that the properties of the func- 

tionally graded piezoelectric ceramic strip vary 

continuously along the thickness and are simpli- 

fied as follows (Erdogan, 1985), 

c ~ =  c ° e ~ ( 1 ) 

dn = (/°1 e py (2) 

e ls=e°se  ~ (3) 

where c44, dal and els are the elastic modulus, the 

dielectric permittivity and the piezoelectric con- 

stant, respectively, c ° ,  (/°1 and e°~ are material 

properties at y----0, and fl is the non-homo- 

geneous material constant. 

The piezoelectric boundary value problem is 

simplified considerably if we consider only the 

out-of-plane displacement and the in-plane elec- 

tric fields such that 

Uxi = Uyi=O, uzi---- wi (x, y)  (4) 

Exi=Exi(x, y), Eyi=E,i(x, y), Ezi=0 (5) 

where uk,. and E ~ i ( k = x ,  y,  z)  are displacements 

and electric fields, respectively. Subscript i(i----1, 

2) stands for upper and lower regions, respec- 

tively. 

In this case, the constitutive relations become 

az, ii (x,  y) : c44w,,~ + elsd, bi, j (6) 

Dji (x, y) = elswi.~-- dn¢i,~ (7) 

where o'~i, D~i ( j=x ,  y)  and ¢i are the stress 

components, the electric displacements and the 

electric potential, respectively. 

Anti-plane governing equations are simplified 

to 

e l sV2wi_d l lVZ¢i+13(  , c~wi .4 O¢i ~ '  0y--" l~  3y /=0 (9) 

where X72=gz/c~x2+o~/Oy z is the two dimen- 

sional Laplace operator. 

The boundary conditions are written as fol- 

lows, 

Uyzi(X, O)=Z'0 (0--<x<a) (10) 

w~(x, 0 +)=w~(x, 0-) ( a - < x < ~ )  (11) 
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D~(x, O)=Do 

¢,(x, 0 +) =¢~(x. 0-) 

a.~: (x, 0 +) =a,,.z(X, 0-) 

Dr:(x, 0 +) =Drz(x, 0-) 

( O < x < a )  

( a < x < o o )  

( a < x < o o )  

( a < x < o o )  

0"y~:(x, h,) =ar~z(x, - hz) =0 (O<x<oo)  

Dy:(x, h,) =D~z(X, - h2) =0 (O<_x<oo) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

where r0 and Do are a uniform shear stress and 
electric displacement, respectively. 

A Fourier transform is applied to Eqs. (8) and 
(9), and the results are 

2 
(x, y) =~fo { A:~(s) eq~+A2,(s) e -q'y }cos (sx) ds (18) W~ 

¢, (x, y) =2f0 "{ B:~ (s) e"~ + Bz,.(s) e -~ }cos (sx) ds (19) 

where 

q : =  ~'-2-~-' q2=7"+2 fl- (20) 

7 = (21) 4 

and A~i, B~i(j=l,  2) are the unknowns to be 
solved. 

It is convenient to use the following definitions, 

A u  (s) +A21 (s) -A12 (s) -A22 (S) = 2 D  (s) (22) 

Bn(s) +Bz~(s) -B:z(s)  -B2z(s) = 2 E ( s )  (23) 

Using the Eqs. (14) ~ (17), (22) and (23), and 
the mixed boundary conditions Eqs. (10)~  (13), 
we can obtain the following two simultaneous 
dual integral equations, 

fo=sF (s) D (s) (sx) ds COS 

(24) 
z I ~ e% Do) 

- 2  ~° / r° +~-~°~ ( O < x < a )  

fo®D(s)cos(sx)ds=O (a_<x <oo) (25) 

fo*~SF (s) E (s) (sx) ds COS 

(26) 
_;'r 1 [e°s / e°~ Do~-Do~(O<x<a) 

fo=E(s)cos(sx)ds=O ( a < x < o o )  (27) 

where 

F(s)  = q2 2k ( 1 - e  -zrh') ( l - - e  -zrh') 
s k + l  1 - e  -4rh (28) 

k =  ql (29) 
q2 

0 2 
/.t0=cO+ el5 (30) 

d o, 

To solve the dual integral equations, we define 
D(s) and E(s) in the forms, 

= foa~@(~)Jo(s~) dq e (31) D(s) 

= foa~#z(~)Jo(s~) d~ (32) E(s) 

where Jo(s$) is the zero-order Bessel function of 
the first kind. 

Inserting the Eqs. (31) and (32) into the Eqs. 
( 2 4 ) -  (27), we can find that the auxiliary func- 
tions ~1(~) and ~2(~) are given by a Fredholm 
integral equation of the second kind in the form, 

ah(¢) +fo °K(¢, 7) ¢,(,~)d~ 
z 1 eOs ,-, ~ (33) 
2 /.to( -- r 0 + ~ -  L'0] 

ail 

n" 1 re% e°s -- 2 d°l L ~ - ( r ° +  d~1°1 Do)_Do I (34) 

where 

K(~, 7)=7 s{ F ( s ) - I  }Jo(s~)]o(s~)ds (35) 

For the sake of convenience, we define the 
following non-dimensional quantities, 

zl=aH, $ = a ~ ,  s = S '  Y=-a-'f' fl=~_B (36) 

zr 1 ( , e°5 r~'~ ~r(S) 

(37) 
z 1 ( e% ~ ~ ( H )  

r o+~6-  uo]  ¢,(7) =y76-  a;, VH 

rill L /1 all, / 
(38) 

7r 1 [e, ° / , el ° ,~N ,-~7 /if(H) 
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Substituting Eqs. ( 3 6 ) -  (38) into Eqs. (33) 

(35),  we can obtain a Fredholm integral equation 

of the second kind in the form, 

+ fo 'L(E,  H) ¢Y(H)dH=v'~-~ (39) 

where 

L(:,, H) = ,"~i~S{ F(s/a) - l  }Jo(SH)Jo(S~)dS (40) 

F(S/a)=Qz 2K ( l - e  ) ( l - e -  (~-~)) (41) 
S K+I l_e-4rh a 

Q1 (42) O~=F-~-, O~=F+ B, K= O~ 

F = ~  B2 
4 (43) 

e denotes the eccentricity. 

Extending the traditional concept of stress in- 

tensity factor to other field variables, we have 

K r = K m  -- ro,/~d ~(1)  (44) 

1 ~ e°s Ks=-T I ro + - 3 - 0 - D o ) f ~  ~(1)  (45) 
/1 aXl 

K ° :  Do,/~a ~Y (1) (46) 

l I- eOs eO~ ~ + D o l . f ~ _ / / / . ( i  ) 
/{'~ ---- ~11 L --~6- ( ~o + ~ioi ] _ (47) 

where K r, K s, K ° and K E "are stress intensity, 

strain intensity, electric displacement intensity 

and electric field intensity factor, respectively. 

Evaluating the energy release rate G for the 

anti-plane case obtained by Pak(1990) on a 

vanishingly small contour at a crack tip, we can 

obtain 

KrKS-KOK ~ 
G= 

2 (48) 
~ra FI / _e°s  , . , \2 Dg-l~ 

3. Discussions 

Equation (39) is reduced to the solution (Kwon 

et al., 2000) for an infinite piezoelectric strip con- 

taining a central crack parallel to the strip edges 

by ignoring inhomogeneity and eccentricity ( f l=  

0 and e = 0 ) .  This implies the correctness and 

accuracy of our results. 

Table 1 Material properties of piezoelectric ceramic 
at y = 0  

Material Properties Symbol 

Elastic stiffness c ° 

Piezoelectric constants e~5 

Permittivity dt °, 

Critical energy release rate GcT 

Unit Piezoceramics 

x 10 l° N/m z 2.3 

C/m 2 17.0 

× 10 -'° F/m 150.4 

N/m 5.0 

= 

2 

Fig. 2 

B = 2 . 0  

- - - - -  e / h  = 0 . 0  

- ' " '  - . . . .  e A a  = 0 . 2  

ce l l  ~ 0 . 4  

r ~h = 0.8 I 
2 2 v  - -  / 

/ 

/ " 

/ 

I~, - -  / 

iN;t I 1 
tHKI 

f 

/ 

f - - a  

I , i ~ I ~ I , / 
r,SI1 I i~l 1.50 21Xl 2.5 

a/h 

Stress intensity factor Km/rof~a versus a /h  
with various values of e/h at B=2.0 

To examine the effect of electro-mechanical 

interactions on the stress intensity factor and the 

energy release rate, we assume that piezoelectric 

material properties at y = 0  are same as PZT-5H 

which are listed in Table 1. 

Figure 2 displays the variation of the nor- 

malized stress intensity factor Km/ro,/~d versus 

a/h with various e/h  values at B=2 .0 .  Stress 

intensity factor (SIF) increases when the crack 

length and the eccentricity increase. Figure 3 

shows the variation of the normalized stress in- 

tensity factor Km/ro,/~d versus a/h with various 

values at e/h=O.O. SIF increases with the in- 

crease of the crack length and non-homogeneous 

material constant values. The normalized energy 

release rate G/Gcr is shown in Fig. 4 and 5 for 

crack length of 2a=0.02 m, r0=3.2X 106N/m z 

and D0=4.8×10  - s C / m  2. Energy release rate 

(ERR) increases with the increase of the crack 

length, eccentricity and non-homogeneous ma- 
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Fig. 4 Energy release rates G/Gcr versus a/h with 

various values of e/h at B = 2 . 0  
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t 

terial  cons tan t  values. F igure  6 shows the var ia-  

t ion  of  the normal i zed  energy release rate G/Gcr 
versus Do wi th  var ious  values o f  B and  e/h. E R R  

increases and  decreases depend ing  on  the direc- 

t ion  and  magn i tude  of  electrical  loading.  A n d  for 

cer ta in  electrical  load,  the sign of  E R R  can be 

negative. Negat ive  va lue  of  E R R  means  crack 

re tarding.  This  results agrees wi th  those  of  Deeg 

(1980),  Sosa (1992),  Pak  (1990, 1992), Xu  and  

Ra japakse (1999)  and  K w o n  et al. (2000).  

4 .  C o n c l u s i o n s  

The  eccentric crack p rob lem in a func t iona l ly  

graded  piezoelectr ic  ceramic  s tr ip  was ana lyzed  

by the integral  t r ans fo rm approach .  The  t rad i -  

t i ona l  concep t  of  l inear  elastic fracture mechan ics  

is extended to inc lude  the piezoelectr ic  effects and  

the results are expressed in terms o f  the stress 

intensi ty factor  and  the energy release rate. The  
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stress intensity factor and the energy release rate 

increase as the crack length increases and the 

location of crack approaches to the surface. And 

the stress intensity factor and the energy release 

rate also increase when the non-homogeneous 

material constant increases. Retard of crack 

growth occurs dependent on the direction and 

magnitude of electrical loading. 
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